3.259 \(\int x^4 (d+e x)^3 (d^2-e^2 x^2)^p \, dx\)

Optimal. Leaf size=218 \[ \frac{2 d^3 (p+11) x^5 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )}{5 (2 p+7)}-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{p+1}}{2 p+7}-\frac{2 d^6 \left (d^2-e^2 x^2\right )^{p+1}}{e^5 (p+1)}+\frac{9 d^4 \left (d^2-e^2 x^2\right )^{p+2}}{2 e^5 (p+2)}-\frac{3 d^2 \left (d^2-e^2 x^2\right )^{p+3}}{e^5 (p+3)}+\frac{\left (d^2-e^2 x^2\right )^{p+4}}{2 e^5 (p+4)} \]

[Out]

(-2*d^6*(d^2 - e^2*x^2)^(1 + p))/(e^5*(1 + p)) - (3*d*x^5*(d^2 - e^2*x^2)^(1 + p))/(7 + 2*p) + (9*d^4*(d^2 - e
^2*x^2)^(2 + p))/(2*e^5*(2 + p)) - (3*d^2*(d^2 - e^2*x^2)^(3 + p))/(e^5*(3 + p)) + (d^2 - e^2*x^2)^(4 + p)/(2*
e^5*(4 + p)) + (2*d^3*(11 + p)*x^5*(d^2 - e^2*x^2)^p*Hypergeometric2F1[5/2, -p, 7/2, (e^2*x^2)/d^2])/(5*(7 + 2
*p)*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.177168, antiderivative size = 218, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {1652, 459, 365, 364, 446, 77} \[ \frac{2 d^3 (p+11) x^5 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )}{5 (2 p+7)}-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{p+1}}{2 p+7}-\frac{2 d^6 \left (d^2-e^2 x^2\right )^{p+1}}{e^5 (p+1)}+\frac{9 d^4 \left (d^2-e^2 x^2\right )^{p+2}}{2 e^5 (p+2)}-\frac{3 d^2 \left (d^2-e^2 x^2\right )^{p+3}}{e^5 (p+3)}+\frac{\left (d^2-e^2 x^2\right )^{p+4}}{2 e^5 (p+4)} \]

Antiderivative was successfully verified.

[In]

Int[x^4*(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

(-2*d^6*(d^2 - e^2*x^2)^(1 + p))/(e^5*(1 + p)) - (3*d*x^5*(d^2 - e^2*x^2)^(1 + p))/(7 + 2*p) + (9*d^4*(d^2 - e
^2*x^2)^(2 + p))/(2*e^5*(2 + p)) - (3*d^2*(d^2 - e^2*x^2)^(3 + p))/(e^5*(3 + p)) + (d^2 - e^2*x^2)^(4 + p)/(2*
e^5*(4 + p)) + (2*d^3*(11 + p)*x^5*(d^2 - e^2*x^2)^p*Hypergeometric2F1[5/2, -p, 7/2, (e^2*x^2)/d^2])/(5*(7 + 2
*p)*(1 - (e^2*x^2)/d^2)^p)

Rule 1652

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2] && IGtQ[m, -2] &&  !
IntegerQ[2*p]

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int x^4 (d+e x)^3 \left (d^2-e^2 x^2\right )^p \, dx &=\int x^4 \left (d^2-e^2 x^2\right )^p \left (d^3+3 d e^2 x^2\right ) \, dx+\int x^5 \left (d^2-e^2 x^2\right )^p \left (3 d^2 e+e^3 x^2\right ) \, dx\\ &=-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{1+p}}{7+2 p}+\frac{1}{2} \operatorname{Subst}\left (\int x^2 \left (d^2-e^2 x\right )^p \left (3 d^2 e+e^3 x\right ) \, dx,x,x^2\right )+\frac{\left (2 d^3 (11+p)\right ) \int x^4 \left (d^2-e^2 x^2\right )^p \, dx}{7+2 p}\\ &=-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{1+p}}{7+2 p}+\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{4 d^6 \left (d^2-e^2 x\right )^p}{e^3}-\frac{9 d^4 \left (d^2-e^2 x\right )^{1+p}}{e^3}+\frac{6 d^2 \left (d^2-e^2 x\right )^{2+p}}{e^3}-\frac{\left (d^2-e^2 x\right )^{3+p}}{e^3}\right ) \, dx,x,x^2\right )+\frac{\left (2 d^3 (11+p) \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p}\right ) \int x^4 \left (1-\frac{e^2 x^2}{d^2}\right )^p \, dx}{7+2 p}\\ &=-\frac{2 d^6 \left (d^2-e^2 x^2\right )^{1+p}}{e^5 (1+p)}-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{1+p}}{7+2 p}+\frac{9 d^4 \left (d^2-e^2 x^2\right )^{2+p}}{2 e^5 (2+p)}-\frac{3 d^2 \left (d^2-e^2 x^2\right )^{3+p}}{e^5 (3+p)}+\frac{\left (d^2-e^2 x^2\right )^{4+p}}{2 e^5 (4+p)}+\frac{2 d^3 (11+p) x^5 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )}{5 (7+2 p)}\\ \end{align*}

Mathematica [A]  time = 0.268524, size = 219, normalized size = 1. \[ \frac{1}{70} \left (d^2-e^2 x^2\right )^p \left (14 d^3 x^5 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )+30 d e^2 x^7 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{7}{2},-p;\frac{9}{2};\frac{e^2 x^2}{d^2}\right )-\frac{35 \left (d^2-e^2 x^2\right ) \left (6 d^4 e^2 \left (p^2+6 p+5\right ) x^2+3 d^2 e^4 \left (p^3+8 p^2+17 p+10\right ) x^4+6 d^6 (p+5)+e^6 \left (p^3+6 p^2+11 p+6\right ) x^6\right )}{e^5 (p+1) (p+2) (p+3) (p+4)}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^4*(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

((d^2 - e^2*x^2)^p*((-35*(d^2 - e^2*x^2)*(6*d^6*(5 + p) + 6*d^4*e^2*(5 + 6*p + p^2)*x^2 + 3*d^2*e^4*(10 + 17*p
 + 8*p^2 + p^3)*x^4 + e^6*(6 + 11*p + 6*p^2 + p^3)*x^6))/(e^5*(1 + p)*(2 + p)*(3 + p)*(4 + p)) + (14*d^3*x^5*H
ypergeometric2F1[5/2, -p, 7/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d^2)^p + (30*d*e^2*x^7*Hypergeometric2F1[7/2, -p
, 9/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d^2)^p))/70

________________________________________________________________________________________

Maple [F]  time = 0.586, size = 0, normalized size = 0. \begin{align*} \int{x}^{4} \left ( ex+d \right ) ^{3} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(e*x+d)^3*(-e^2*x^2+d^2)^p,x)

[Out]

int(x^4*(e*x+d)^3*(-e^2*x^2+d^2)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{3}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p*x^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{3} x^{7} + 3 \, d e^{2} x^{6} + 3 \, d^{2} e x^{5} + d^{3} x^{4}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((e^3*x^7 + 3*d*e^2*x^6 + 3*d^2*e*x^5 + d^3*x^4)*(-e^2*x^2 + d^2)^p, x)

________________________________________________________________________________________

Sympy [B]  time = 17.9917, size = 2958, normalized size = 13.57 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(e*x+d)**3*(-e**2*x**2+d**2)**p,x)

[Out]

d**3*d**(2*p)*x**5*hyper((5/2, -p), (7/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/5 + 3*d**2*e*Piecewise((x**6*(d*
*2)**p/6, Eq(e, 0)), (-2*d**4*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - 2*d**4*log(d/e +
 x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - d**4/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) + 4
*d**2*e**2*x**2*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) + 4*d**2*e**2*x**2*log(d/e + x)/
(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - 2*e**4*x**4*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 +
4*e**10*x**4) - 2*e**4*x**4*log(d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) + 2*e**4*x**4/(4*d**4
*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4), Eq(p, -3)), (-2*d**4*log(-d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) - 2*
d**4*log(d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) - 2*d**4/(-2*d**2*e**6 + 2*e**8*x**2) + 2*d**2*e**2*x**2*log(-d
/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) + 2*d**2*e**2*x**2*log(d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) + e**4*x**4/
(-2*d**2*e**6 + 2*e**8*x**2), Eq(p, -2)), (-d**4*log(-d/e + x)/(2*e**6) - d**4*log(d/e + x)/(2*e**6) - d**2*x*
*2/(2*e**4) - x**4/(4*e**2), Eq(p, -1)), (-2*d**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*
p + 12*e**6) - 2*d**4*e**2*p*x**2*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) - d
**2*e**4*p**2*x**4*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) - d**2*e**4*p*x**4
*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + e**6*p**2*x**6*(d**2 - e**2*x**2)*
*p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + 3*e**6*p*x**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*
e**6*p**2 + 22*e**6*p + 12*e**6) + 2*e**6*x**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p +
 12*e**6), True)) + 3*d*d**(2*p)*e**2*x**7*hyper((7/2, -p), (9/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/7 + e**3
*Piecewise((x**8*(d**2)**p/8, Eq(e, 0)), (-6*d**6*log(-d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*
e**12*x**4 + 12*e**14*x**6) - 6*d**6*log(d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 1
2*e**14*x**6) - 2*d**6/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) + 18*d**4*e**
2*x**2*log(-d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) + 18*d**4*e**2*
x**2*log(d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) - 18*d**2*e**4*x**
4*log(-d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) - 18*d**2*e**4*x**4*
log(d/e + x)/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) + 9*d**2*e**4*x**4/(-12
*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) + 6*e**6*x**6*log(-d/e + x)/(-12*d**6*e*
*8 + 36*d**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) + 6*e**6*x**6*log(d/e + x)/(-12*d**6*e**8 + 36*d
**4*e**10*x**2 - 36*d**2*e**12*x**4 + 12*e**14*x**6) - 9*e**6*x**6/(-12*d**6*e**8 + 36*d**4*e**10*x**2 - 36*d*
*2*e**12*x**4 + 12*e**14*x**6), Eq(p, -4)), (-6*d**6*log(-d/e + x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*
x**4) - 6*d**6*log(d/e + x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) - 3*d**6/(4*d**4*e**8 - 8*d**2*e*
*10*x**2 + 4*e**12*x**4) + 12*d**4*e**2*x**2*log(-d/e + x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) +
12*d**4*e**2*x**2*log(d/e + x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) - 6*d**2*e**4*x**4*log(-d/e +
x)/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) - 6*d**2*e**4*x**4*log(d/e + x)/(4*d**4*e**8 - 8*d**2*e**1
0*x**2 + 4*e**12*x**4) + 6*d**2*e**4*x**4/(4*d**4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4) - 2*e**6*x**6/(4*d*
*4*e**8 - 8*d**2*e**10*x**2 + 4*e**12*x**4), Eq(p, -3)), (-6*d**6*log(-d/e + x)/(-4*d**2*e**8 + 4*e**10*x**2)
- 6*d**6*log(d/e + x)/(-4*d**2*e**8 + 4*e**10*x**2) - 6*d**6/(-4*d**2*e**8 + 4*e**10*x**2) + 6*d**4*e**2*x**2*
log(-d/e + x)/(-4*d**2*e**8 + 4*e**10*x**2) + 6*d**4*e**2*x**2*log(d/e + x)/(-4*d**2*e**8 + 4*e**10*x**2) + 3*
d**2*e**4*x**4/(-4*d**2*e**8 + 4*e**10*x**2) + e**6*x**6/(-4*d**2*e**8 + 4*e**10*x**2), Eq(p, -2)), (-d**6*log
(-d/e + x)/(2*e**8) - d**6*log(d/e + x)/(2*e**8) - d**4*x**2/(2*e**6) - d**2*x**4/(4*e**4) - x**6/(6*e**2), Eq
(p, -1)), (-6*d**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8) -
6*d**6*e**2*p*x**2*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8) -
3*d**4*e**4*p**2*x**4*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8)
 - 3*d**4*e**4*p*x**4*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8)
 - d**2*e**6*p**3*x**6*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8
) - 3*d**2*e**6*p**2*x**6*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e
**8) - 2*d**2*e**6*p*x**6*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e
**8) + e**8*p**3*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8)
 + 6*e**8*p**2*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8) +
 11*e**8*p*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8) + 6*e
**8*x**8*(d**2 - e**2*x**2)**p/(2*e**8*p**4 + 20*e**8*p**3 + 70*e**8*p**2 + 100*e**8*p + 48*e**8), True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{3}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p*x^4, x)